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ABSTRACT
Fine-grained visual categorization (FGVC) aims at recognizing ob-
jects from similar subordinate categories, which is challenging and
practical for human’s accurate automatic recognition needs. Most
FGVC approaches focus on the attention mechanism research for
discriminative regions mining while neglecting their interdepen-
dencies and composed holistic object structure, which are essen-
tial for model’s discriminative information localization and un-
derstanding ability. To address the above limitations, we propose
the Structure Information Modeling Transformer (SIM-Trans)
to incorporate object structure information into transformer for
enhancing discriminative representation learning to contain both
the appearance information and structure information. Specifically,
we encode the image into a sequence of patch tokens and build
a strong vision transformer framework with two well-designed
modules: (i) the structure information learning (SIL) module is
proposed to mine the spatial context relation of significant patches
within the object extent with the help of the transformer’s self-
attention weights, which is further injected into the model for
importing structure information; (ii) themulti-level feature boost-
ing (MFB) module is introduced to exploit the complementary
of multi-level features and contrastive learning among classes to
enhance feature robustness for accurate recognition. The proposed
two modules are light-weighted and can be plugged into any trans-
former network and trained end-to-end easily, which only depends
on the attention weights that come with the vision transformer
itself. Extensive experiments and analyses demonstrate that the
proposed SIM-Trans achieves state-of-the-art performance on fine-
grained visual categorization benchmarks. The code is available at
https://github.com/PKU-ICST-MIPL/SIM-Trans_ACMMM2022.
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1 INTRODUCTION
Fine-grained visual categorization (FGVC) task [35] targets at recog-
nizing object into specific subcategory from a given basic category,
such as identifying bird species [30]. It is different from generic
image classification which only needs to predict the basic category,
such as “Bird”. There exist much more challenges due to its intrin-
sic large intra-class variance and small inter-class variance. For
example, “Artic Tern” and “Common Tern” belong to the “Bird”
basic category and only have subtle difference in the tail and beak,
which are hard to distinguish. Thus, locating discriminative re-
gions to extract features and designing high-order robust features
are researched for addressing the above problem. The localization
based methods are widely studied for its better interpretation and
promising performance.

Early works [2, 3, 37] are designed to localize discriminative
regions with the help of human annotations, i.e., bounding box of
object or part annotations. Whereas, human annotations for fine-
grained image classification are hard to obtain due to the strict
requirements for expertise. Aiming at addressing this problem, a
lot of researches [5, 7, 9, 11, 14, 15, 23, 27, 31, 32, 36, 39, 42] have
been conducted on the weakly-supervised fine-grained visual cate-
gorization task, which only utilizes the image category labels. They
mainly detect semantic parts explicitly [11, 14, 36, 39] or conduct
saliency regions positioning implicitly [5, 7, 23, 42], which follows
the feature extraction and fusion for final classification. The first
class of methods such as [11, 14] mainly adopt the region proposal
network to obtain the location of discriminative image regions. The
selected image regions are resized into fixed size and input into the
backbone network for feature extraction and classification. And the
second class of methods such as [7, 23] exploit the attention mech-
anism for salient regions detection and utilization, which can be
flexibly designed along with the backbone network. However, the
above methods generally ignore the relation among discriminative
regions within object in the model designing. It may cause bad local-
ization results with large area of irrelevant background, which leads
to a sharp drop of classification performance. Meanwhile, when
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reviewing the intrinsic structure of the CNN based FGVC methods,
we find that the stacked convolution and pooling operations bring
both the expansion of the receptive field and the degradation of
spatial discrimination. Large continuous image areas are focused
on and discriminative details are generally overlooked, which are
essential for distinguishing subtle difference in fine-grained visual
categorization.

Recently, vision transformer (ViT) [8] and its variants present a
new solution of encoding image into a sequence of patch tokens for
recognition, which has achieved promising performance. The multi-
head self-attention mechanism in transformer provides long-range
dependency to enhance the interaction among image patches. And
the discriminative patch information is kept with the deeper of the
transformer layer for deciding the final classification. Thus, the vi-
sion transformer can alleviate the aforementioned problems in CNN
based FGVC methods to some extent. RAMS-Trans [16] proposes
the dynamic patch proposal module to guide region amplification
for multi-scale learning in fine-grained visual categorization. How-
ever, the above methods mainly focus on significant patch tokens
selection while ignoring their relation in the holistic object struc-
ture, which is also essential for identifying discriminative regions.
For example, models can be puzzled due to lacking the cognitive
ability for object structure in many cases [42], such as localizing
legs of a bird among twigs.

Therefore, we propose the structure information modeling trans-
former dubbed SIM-Trans to introduce structure information into
the vision transformer for fine-grained visual categorization. SIM-
Trans attempts to model the context information among regions
within the object to highlight discriminative regions for accurate
recognition. Firstly, we construct a vision transformer backbone
to encode the image into a sequence of patch tokens for feature
extraction. Secondly, in order to model the object structure infor-
mation, we propose the structure information learning (SIL)
module to mine spatial context relations among discriminative
patches within the object extent. Benefiting from the self-attention
characteristics of transformer, the attention weight between the
cls token (standing for the whole image) and patch token is highly
correlated with whether the patch token contains the object infor-
mation. Thus, discriminative patches can be selected expediently
in this way. The relative position relation and semantic relation
among patches are calculated to construct the graph of depicting
the object structure information, which is further extracted and
injected into the backbone by graph convolution. The SIL module
can boost the model to learn the object structural composition and
highlight significant regions through end-to-end training. Thirdly,
to further enhance the feature robustness and discrimination, a
multi-level feature boosting (MFB) module is designed. We pro-
pose to concatenate the features from the last three transformer
layers to take advantage of their complementary, which have been
injected the object structure information by the aforementioned SIL
module. Besides, contrastive learning is introduced to further boost
model’s performance, which enhances the feature representation
similarity of samples from the same category and weaken that from
different categories.

The main contributions made in this paper can be summarized
as follows:

• We propose the structure information modeling transformer
dubbed SIM-Transwith twowell-designedmodules for boost-
ing fine-grained representation learning to contain both the
appearance information and structure information.

• The structure information learning (SIL) module is proposed
to mine the spatial context relations among discriminative
regions within object extent, which boosts themodel’s under-
standing ability for object structure. The multi-level feature
boosting (MFB) module is designed to exploit the comple-
mentary of multi-level features and contrastive learning for
robust feature representation.

• The proposed SIL and MFB modules are light-weighted,
which only depend on the attention weighs that come with
the vision transformer itself. They can be easily plugged into
any vision transformer backbones and trained end-to-end.
Extensive experiments and analyses on two typical fine-
grained visual categorization benchmarks demonstrate that
our proposed method achieves new state-of-the-art.

The rest of the paper is organized as follows: Section 2 briefly
reviews the related work on fine-grained visual categorization and
vision transformer. Section 3 elaborates our SIM-Trans approach
and Section 4 introduces the experimental results and analyses, as
well as ablation studies. Finally, Section 5 concludes this paper.

2 RELATEDWORK
In this section, we briefly introduce the related work of fine-grained
visual categorization and vision transformer.

2.1 Fine-grained Visual Categorization
Recent approaches mainly focus on the discriminative regions dis-
covery and feature extraction for fine-grained visual categorization
[7, 14, 15, 26, 33, 34]. Ding et al. [7] propose S3N to utilize sparse
attention to estimate informative regions and extract discriminative
and complementary features for classification. He et al. [15] pro-
poseM2DRL to automatically determine the location and number of
discriminative regions with reinforcement learning paradigm. Song
et al. [26] propose Bi-Modal PMA to capture discriminative parts
stage-by-stage with the progressive mask attention model. Rao et al.
[24] propose a counterfactual attention learning method to obtain
more useful attention for fine-grained visual categorization. How-
ever, the above methods generally ignore object’s holistic structure
information, which is greatly helpful for localizing the whole object
extent. In our proposed method, the object structure information
is introduced explicitly for highlighting the discriminative regions
within object.

2.2 Vision Transformer
Recently, many vision transformer methods have been proposed for
computer vision tasks. ViT [8] is the first work to introduce the pure
transformer into image classification, which splits the image into
a sequence of patch tokens as input of transformer and achieves
promising performance. Zheng et al. [41] propose SETR to utilize
ViT as the encoder for image segmentation. He et al. [13] propose
TransReID to introduce the jigsaw patch module and side infor-
mation embeddings into transformer for object re-identification.
Recently, RAMS-Trans [16] is proposed for fine-grained visual

5854



SIM-Trans: Structure Information Modeling Transformer for Fine-grained Visual Categorization MM ’22, October 10–14, 2022, Lisboa, Portugal

10 * 2 3 4 5 6

*

Transformer Layer

Linear Projection

...(L-2)

Position  
Embedding

Contrastive Learning

Positive Pairs

Negative Pairs

Cross-entropy 
Loss

FC

*

Multi-level Feature Boosting Vison Transformer

Q1Q1 K1K1 V1V1

...

Q2 K2 V2 QH KH VH

Object Structure Embedding

Structure Information Learning

Graph CNNStructure Feature Object Structure Information

*

Transformer Layer

Transformer Layer

Transformer Layer

* : CLS Token

Feature 
Fusion

...

Figure 1: The overall framework of our proposed SIM-Trans.

categorization, which designs the recurrent attention multi-scale
transformer to find and amplify significant regions for learning
multi-scale features. However, the above vision transformer works
generally ignore the spatial relation of patches, which is impor-
tant for significant patches discovery. Our proposed SIM-Trans
incorporates the object structure information into transformer to
enhance discriminative patch features for accurate fine-grained
visual categorization.

3 APPROACH
Our proposed SIM-Trans is based on the vision transformer with
several critical improvements for specializing in fine-grained visual
categorization task. The overall framework of SIM-Trans is shown
in Figure 1. The vision transformer backbone (the middle part) takes
image patch tokens and works as an extractor. The self-attention
weights of the transformer layer are borrowed by the structure
information learning (SIL)module (the right part) tomine the spatial
context information of discriminative patches within the object.
The multi-level feature boosting (MFB) module (the left part) fuses
the feature from different levels to exploit their complementary, and
the feature is also boosted by contrastive learning simultaneously.

3.1 Vision Transformer Backbone
The vision transformer backbone is composed of feature extractor
and classifier head, which is shown in the middle part of Figure 1.
Before being input to the feature extractor, the image 𝑥 ∈ 𝑅𝐻×𝑊 ×3,
where 𝐻 and𝑊 denotes its height and width respectively, is gener-
ally split into 𝑁 patch tokens through non-overlapping splitting,
denoted as {𝑥1

𝑝𝑎𝑡𝑐ℎ
, 𝑥2

𝑝𝑎𝑡𝑐ℎ
, ..., 𝑥𝑁

𝑝𝑎𝑡𝑐ℎ
}. However, this splitting way

may cause the incomplete neighboring information within the
patch due to the hard separation. Thus, we adopt the sliding win-
dow splitting method following [13]. Specifically, the patch size
and the window’s sliding step are denoted as 𝑃 and 𝑆 , the patch
sequence length 𝑁 for the image 𝑥 can be calculated as follows:

𝑁 = 𝑁𝐻 × 𝑁𝑊 =

⌊
𝐻 − 𝑃
𝑆

+ 1
⌋
×
⌊
𝑊 − 𝑃
𝑆

+ 1
⌋

(1)

where ⌊·⌋ denotes the floor operation, 𝑁𝐻 and 𝑁𝑊 denote the patch
numbers in vertical and horizontal directions after splitting. In this
way, the local neighboring information preservation problem is
alleviated to some degree.

The patch token {𝑥𝑖
𝑝𝑎𝑡𝑐ℎ

} is then projected into 𝐷-dimensional
embedding through linearmapping 𝐹 (·). For representing thewhole
image, a learnable 𝑐𝑙𝑠 embedding token 𝑥𝑐𝑙𝑠 is introduced and put at
the beginning of the input sequence embeddings. To incorporate po-
sition information, learnable position embeddings 𝐸𝑝 ∈ 𝑅 (𝑁+1)×𝐷

are added to the input sequence embeddings to get 𝑧0 as the input
of the first transformer layer as follows:

𝑧0 = [𝑥𝑐𝑙𝑠 , 𝐹 (𝑥1
𝑝𝑎𝑡𝑐ℎ

), 𝐹 (𝑥2
𝑝𝑎𝑡𝑐ℎ

), ..., 𝐹 (𝑥𝑁
𝑝𝑎𝑡𝑐ℎ

)] + 𝐸𝑝 (2)

The transformer feature extractor is composed of 𝐿 transformer
layers, each of which consists of a multi-head self-attention (MSA)
module and a feed forward neural network of two fully connected
layers. The output of the 𝑘𝑡ℎ transformer layer is calculated as
follows:

𝑧
′

𝑘
= 𝐿𝑁 (𝑀𝑆𝐴(𝑧𝑘−1) + 𝑧𝑘−1) (3)

𝑧𝑘 = 𝐿𝑁 (𝐹𝐹𝑁 (𝑧
′

𝑘
) + 𝑧

′

𝑘
) (4)
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where 𝐿𝑁 (·) denote the layer normalization [1]. The output 𝑐𝑙𝑠
tokens of the last three transformer layers are concatenated and
regarded as image representation (more details in Sec. 3.3), which is
forwarded into a classifier head to get the prediction vector 𝑝𝑟𝑒𝑑 (𝐼 )
for the input image 𝐼 . The classification loss is as follows:

𝐿𝐶𝐸 = −
∑︁

𝐼 ∈𝑆 (𝐼 )
(𝑦 · log(𝑝𝑟𝑒𝑑 (𝐼 ))) (5)

where 𝑆 (𝐼 ) is the training set and 𝑦 is the one-hot label of image 𝐼 .

3.2 Structure Information Learning
The vision transformer backbone can achieve promising image
classification results, which utilizes the self-attention mechanism
to own a global receptive filed. However, the vision transformer
framework generally ignores the spatial relation of patches, which
is important for identifying discriminative patches in fine-grained
visual categorization task. Thus, we propose the structure informa-
tion learning (SIL) module to incorporate the object spatial context
information into the vision transformer and the whole procedure
is shown in the right part of Figure 1.

Localizing the object extent is the precondition for structure
learning. In the transformer layer, the attention weight between
the patch token and cls token depicts its importance for the final
classification, which is highly correlated with whether the patch
token contains the object information. Thus, object can be natu-
rally localized with the help of the attention weights. Suppose the
transformer layer has 𝐻 heads, 𝑄 and 𝐾 are 𝐷-dimensional query
vectors and key vectors of all tokens, then the attention weights
can be calculated as follows:

𝐴𝑡𝑡ℎ = 𝑠𝑜 𝑓 𝑡 max( 𝑄𝐾
𝑇√︁

𝐷/𝐻
) (6)

where 𝐴𝑡𝑡ℎ ∈ 𝑅 (𝑁+1)×(𝑁+1) , ℎ = 1, 2, ..., 𝐻 and 𝑁 = 𝑁𝐻 × 𝑁𝑤 is
the number of patches. The attention weight between patch to-
ken and the cls token for each head is extracted and denoted as
𝐴𝑡𝑡𝑐𝑙𝑠

ℎ
∈ 𝑅𝑁×1. Corresponding total attention weights are calcu-

lated as follows:

𝐴 =

𝐻∑︁
ℎ=1

𝐴𝑡𝑡𝑐𝑙𝑠
ℎ

(7)

The attention weight between the patch token in (𝑥,𝑦) position
and the cls token is denoted as𝐴(𝑥,𝑦) . For filtering out insignificant
patches, the mean value 𝐴 is calculated as the threshold and the
new attention weight is as follows:

𝐴𝑛𝑒𝑤(𝑥,𝑦) =
{
𝐴(𝑥,𝑦) 𝑖 𝑓 𝐴(𝑥,𝑦) > 𝐴

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(8)

Inspired by [42], polar coordinates are applied to measure the
spatial relation between the most discriminative patch and other
patch to mine object’s structure information. Specifically, the patch
with the highest attentionweight is regarded as themost discrimina-
tive patch, which is set as the reference patch. Given the reference
patch 𝑃0 = 𝑃𝑥0,𝑦0 and the horizontal reference direction, where
(𝑥0, 𝑦0) are the indices in 𝑁𝐻 × 𝑁𝑊 plane, the polar coordinates of
patch 𝑃𝑥,𝑦 can be defined as:

𝜌𝑥,𝑦 =

√︂
( 𝑥 − 𝑥0
𝑁𝑊

)
2
+ (𝑦 − 𝑦0

𝑁𝐻
)
2

(9)

\𝑥,𝑦 =
(arctan 2(𝑦 − 𝑦0, 𝑥 − 𝑥0) + 𝜋)

2𝜋
(10)

where 𝜌𝑥,𝑦 is the relative distance between 𝑃𝑥,𝑦 and 𝑃0 and \𝑥,𝑦
is the normalized polar angle of 𝑃𝑥,𝑦 relative to the horizontal di-
rection. To introduce this object structure information, we design
the graph convolutional neural network to obtain the object struc-
ture feature. We firstly construct the graph which contains two
components: (i) the image patch node features 𝑋 which depict the
spatial context correlation based on the calculation of the polar
coordinates and (ii) the edge weights obtained based on attention
weight calculation between cls token and image patch token in
the vision transformer layer, which summarize the significance of
image patch token. Specifically, the matrix 𝐴𝑑 𝑗 = 𝐴𝑛𝑒𝑤 × (𝐴𝑛𝑒𝑤)𝑇
denotes the edge weights among nodes based on the 𝐴𝑛𝑒𝑤 , where
the edge weights related to insignificant patches are zeros to filter
out their affect. The graph convolution is then adopted to further
extract and incorporate the structure information into the vision
transformer. The structure features 𝑆 are obtained by two-layer
graph convolution as follows:

𝑆 = 𝜎 (𝐴𝑑 𝑗 × 𝜎 (𝐴𝑑 𝑗 × 𝑋 ×𝑊 1) ×𝑊 2) (11)

where𝑊 1 and𝑊 2 are learnable parameters and 𝜎 (·) is activation
function. The feature of the reference patch node is regarded as
the object structure feature, which is further added to the cls token
feature for introducing structure information into the transformer
backbone. Through the end-to-end training, the composition of the
object can be modeled and the significant image patch can be high-
lighted, which improves the model’s classification performance.

Overall, the structure information learning module can incorpo-
rate the object structure information, i.e., its spatial composition
of key discriminative patches, into one or more vision transformer
layers. The transformer network can be empowered to learn both
appearance and structure information for accurate fine-grained
classification.

3.3 Multi-level Feature Boosting
After obtaining image features by the transformer feature extractor,
the feature of the cls token 𝑧𝑐𝑙𝑠

𝐿
of the last transformer layer is gen-

erally selected as the image representation for final classification
in vision transformer methods, such as ViT. However, it generally
ignores the complementary of different levels’ features and the
utilization of the inherent intra-class and inter-class semantic re-
lations. Thus, we propose the multi-level feature boosting (MFB)
module for enhancing feature robustness, which is shown in the
left part of the Figure 1.

Specifically, the features of cls tokens from the last three trans-
former layers are concatenated as the final image feature repre-
sentation, which all introduce structure information through the
structure learning module. In this simple but effective way, their
complementary can be exploited to bring performance gains. To
take full advantage of the semantic relations for feature enhance-
ment, contrastive learning is adopted to enhance the feature simi-
larity of the same category and weaken that of different categories.
To mine the hard negative sample pairs to contribute to the model’s
training, a hyper-parameter 𝛼 is adopted in the following con-
trastive learning loss. The negative pairs with similarity which is 𝛼
smaller than that of the positive pairs are filtered out. Formally, the
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contrastive learning loss on a batch of size 𝑁 is defined as follows:

𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑖, 𝑗 = max{0, 𝛼 + 𝑠𝑖𝑚(𝑧𝑖 , 𝑧 𝑗−)
− 1

Γ𝑦 (𝑖 )=𝑦 ( 𝑗 ),𝑖≠𝑗

∑
𝑗 :𝑖≠𝑗

𝑠𝑖𝑚(𝑧𝑖 , 𝑧 𝑗+)} (12)

𝐿𝐶𝐿 = 1
𝑁 2

𝑁∑
𝑖=1

[
𝑁∑

𝑗 :𝑦 (𝑖)=𝑦 ( 𝑗)
(1 − 𝑠𝑖𝑚(𝑧𝑖 , 𝑧 𝑗+))

+
𝑁∑

𝑗 :𝑦 (𝑖)≠𝑦 ( 𝑗)
𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑖, 𝑗 × 𝑠𝑖𝑚(𝑧𝑖 , 𝑧 𝑗−)]

(13)

where (𝑧𝑖 , 𝑧 𝑗+) denotes the positive image representation pair which
have the same category label, i.e., 𝑦 (𝑖) = 𝑦 ( 𝑗), (𝑧𝑖 , 𝑧 𝑗−) denotes
the negative image representation pair which belongs to different
categories, Γ𝑦𝑖=𝑦 𝑗 ,𝑖≠𝑗 denotes the number of positive pairs, 𝑠𝑖𝑚(·)
denotes the cosine similarity calculation.

In summary, the vision transformer backbone, structure informa-
tion learning module and feature boosting module of the proposed
method are jointly trained end to end. The total objective is as
follows:

𝐿 = 𝐿𝐶𝐸 + 𝐿𝐶𝐿 (14)

4 EXPERIMENTS
In this section, we evaluate the performance of the proposed SIM-
Trans approach on two standard fine-grained visual categorization
datasets, i.e., the typical CUB-200-2011 [30] dataset and the large-
scale iNaturalist 2017 [29] dataset. We firstly introduce the datasets
and evaluation metric. Then, we show specific implementation
details, comparison experiments and analyses with recent state-
of-the-art methods for each dataset respectively. Finally, in order
to verify the effectiveness of the proposed modules, we conduct
ablation experiments and analyses.

4.1 Datasets and Evaluation Metric
Two standard fine-grained visual categorization benchmarks are
adopted in the experiments:

• CUB-200-2011 [30] is the most widely used dataset in the
fine-grained visual categorization task. This dataset consists
of 11788 images of 200 bird subcategories, where 5994 images
are selected as training set and 5794 images are selected as
testing set.

• iNaturalist 2017 [29] is one of the largest fine-grained vi-
sual categorization datasets. it contains more than 5,000
fine-grained categories and more than 95,000 test images.
The detailed statistics are shown in table 1, which includes
category number and the split of training data and testing
data. The dataset is very challenging for its large-scale fine-
grained category number and testing data, which provides
a strong benchmark for fine-grained visual categorization
performance contrast.

Accuracy is adopted as the evaluation metric, which is generally
used in fine-grained visual categorization task. And the definition
is as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
|𝐼right |
|𝐼 | (15)

where |𝐼 | denotes the number of images in the testing set and |𝐼right |
denotes the number of images that are correctly classified.

Table 1: Introduction of the iNaturalist 2017 dataset.

Super Class Class Train Images Test Images
Plantae 2101 158407 38206
Insecta 1021 100479 18076
Aves 964 214295 21226
Reptilia 289 35201 5680
Mammalia 186 29333 3490
Fungi 121 5826 1780
Amphibia 115 15318 2385
Mollusca 93 7536 1841
Animalia 77 5228 1362
Arachnida 56 4873 1086
Actinopterygii 53 1982 637
Chromista 9 398 144
Protozoa 4 308 73
Total 5089 579184 95986

4.2 Experiments and Analyses on CUB-200-2011
4.2.1 Implentation Details. In the experiments, the images are
resized into 600×600 and randomly cropped into the size of 448×448
as input during the training stage. Random horizontal flip and
normalization are used for preprocessing. All the above steps are
standard pre-process steps which are generally used in fine-grained
visual categorization methods, such as [16]. In the testing phase,
the images are resized into the size of 600 × 600 and cropped into
the size of 448× 448 from the center. We adopt ViT as the backbone
and the initial weights are loaded from the official ViT-B_16 model
pre-trained on the ImageNet 21k dataset, which is also adopted in
RAMS-Trans [16]. Thus, the comparison experiments with state-of-
the-art (SOTA) transformer-based methods are fair and convincing.
The image is split into patches of size 16 and the sliding window
step is set as 12, which are 𝑃 and 𝑆 in Eq. 1 respectively. We adopt
the stochastic gradient descent (SGD) optimizer with a momentum
of 0.9 for model optimization. The learning rate is initialized as
3e-2 and cosine annealing schedule [22] is exploited to update the
learning rate. The batch size is set as 5 and the number of total
training steps is set to be 10000 and the first 500 steps are warm-up.
We adopt the last three transformer layers to plug in the structure
information learning module in Sec. 3.2 and the hyper-parameter 𝛼
in Eq. 12 is set to be 0.3. We perform the experiments with PyTorch
using NVIDIA GeForce GTX 1080 Ti GPUs.

4.2.2 Comparisons with State-of-the-art Methods . This sub-
section presents comparison experimental results and analyses
with other state-of-the-art (SOTA) methods including CNN based
methods and transformer based methods on CUB-200-2011. For fair
comparison, all the methods adopt the same training and testing
setting, such as the same input image resolution. From Table 2, we
can observe that:

• OnCUB-200-2011, our proposed SIM-Trans approach achieves
the best classification accuracy of 91.8%, which brings 1.2%
improvement than the ViT baseline method. Compared with
the optimal CNN based method CAL [24], our SIM-Trans
achieves 1.2% performance improvement. In the CNN based
methods, attention mechanism and multi-scale learning are
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Table 2: Comparison experiments with other state-of-the-art
methods on CUB-200-2011 dataset.

Method Backbone Acc(%)
KP (CVPR 2017) [6] VGG16 86.2
MA-CNN (ICCV 2017) [39] VGG19 86.5
PC (ECCV 2018) [10] DenseNet161 86.9
NTS-Net (ECCV 2018) [36] ResNet50 87.5
M2DRL (IJCV 2019) [15] VGG16 87.2
S3N (ICCV 2019) [7] ResNet50 88.5
FDL (AAAI 2020) [21] ResNet50 88.6
LIO (CVPR 2020) [42] ResNet50 88.0
PMG (ECCV 2020) [9] ResNet50 89.6
DP-Net (AAAI 2021) [31] ResNet50 89.3
GaRD (CVPR 2021) [38] ResNet50 89.6
Chang et al. (CVPR 2021) [4] ResNet50 89.9
SPS (ICCV 2021) [17] ResNet50 88.7
Joung et al. (ICCV 2021) [19] ResNet50 88.4
CAL (ICCV 2021) [24] ResNet101 90.6
MCEN (ACM MM 2021) [20] ResNet50 89.3
ViT (ICLR 2020) [8] ViT-B_16 90.6
RAMS-Trans (ACMMM2021) [16] ViT-B_16 91.3
Our SIM-Trans approach ViT-B_16 91.8

widely used for discriminative information mining and fea-
ture robustness enhancement. For example, the counterfac-
tual attention learning method is proposed to learn more
effective attention for fine-grained classification in CAL. In
PMG [9], mutli-granularity information with jigsaw opera-
tion is introduced to boostmodel’s recognizing from different
scales. However, the above CNN based methods are gener-
ally affected by the spatial resolution degradation, which
is caused by the convolutional strides and pooling opera-
tion. The transformer based methods can keep the patch
information with the deeper of the layers, which can keep
discriminative detailed information. Thus, the transformer
based method have the advantage for fine-grained visual cat-
egorization and even the pure vision transformer ViT base-
line can perform as well as the SOTA CNN based method,
achieving 90.6% classification accuracy.

• Compared with the transformer based methods, our SIM-
Trans also show the best performance, outperforming the
RAMS-Trans by a margin of 0.5%. RAMS-Trans proposes
to use the attention weights to guide the model to amplify
discriminative regions for multi-scale learning, which is a
heuristic work to combine the advantages from both the CNN
and transformer. However, the multi-branch framework in-
creases the computation cost and the parameter-sharing in
different scales may cause the model’s confusion. By con-
trast, our SIM-Trans guides the model to focus on the holistic
object structure and its component discriminative patches.
It is a soft way to boost the significant patches and inhibit
the useless patches, such as the background patch. Our SIM-
Trans approach makes an attempt to empower the model to
conduct fine-grained recognition from both the object struc-
ture and the local discriminative patches. Learning both the

Brandt Cormorant

Rhinoceros Auklet

Pomarine Jaeger

Input Image ViT Baseline SIM-Trans

Figure 2: Attention visualization based on ViT baseline and
our proposed SIM-Trans. The first column is original images
and the second column shows the attention generated by ViT
baseline. The last column shows the attention generated by
SIM-Trans.

object structure information and fine-grained appearance
information makes our SIM-Trans approach achieve better
classification performance with strong fine-grained repre-
sentation ability.

4.2.3 Qualitative Results . As shown in Figure 2, compared with
the ViT baseline, our proposed SIM-Trans can not only filter out
irrelevant background information but also complete the object
extent and highlight discriminative regions, which verifies its effec-
tiveness in discriminative information mining.

In order to visualize the structure learning effect of our SIM-
Trans approach, we present the raw images and focus regions of
our SIM-Trans model in Figure 3. The first and third rows show the
raw images sampled from the CUB-200-2011 dataset and iNaturalist
2017 dataset respectively. And the second and fourth rows are
corresponding focus regions. From Figure 3, we can observe that the
entire object and discriminative regions are highlighted precisely,
which verifies the effectiveness and improve the interpretability of
our proposed SIM-Trans approach.

4.3 Experiments and Analyses on iNaturalist
2017

4.3.1 Implementation Details. For fair comparison with other
methods, the size of images is set as 304 × 304 following [16]. We
load the weights from the official ViT-B_16 model pre-trained on
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Vermilion Flycatcher Anna Hummingbird Green Kingfisher Scarlet Tanager American Redstart Fish Crow

Agalychnis dacnicolor
Coccinella 

septempunctata
Eriophora pustulosa Eudryas grata Salamandra salamandra

Orthodera 
novaezealandiae

Figure 3: Visualization results of SIM-Trans on CUB-200-2011 and iNaturalist 2017 datasets. The first row and the third row are
original images while the second and the fourth rows present focus regions generated by our SIM-Trans model.

Table 3: Comparison experiments with other state-of-the-art
methods on iNaturalist 2017 dataset.

Method Backbone Acc(%)
ResNet152 (CVPR 2016) [12] ResNet152 59.0
IncResNetV2 (AAAI 2017) [28] InResNetV2 67.3
SSN (ECCV 2018) [25] ResNet101 65.2
TASN (CVPR 2019) [40] ResNet101 68.2
Huang et al. (CVPR 2020) [18] ResNet101 66.8
ViT (ICLR 2020) [8] ViT-B_16 67.0
RAMS-Trans (ACM MM 2021) [16] ViT-B_16 68.5
Our SIM-Trans approach ViT-B_16 69.9

the ImageNet 21k dataset for fair comparisons with other SOTA
transformer based methods. The batch size is set to be 16 and the
number of total training steps is set to be 100000. Stochastic gradient
descent (SGD) optimizer with a momentum of 0.9 is adopted, and
the learning rate is set as 1e-2 with cosine annealing scheduler. We
introduce the structure information in the last three transformer
layers and the hyper-parameter 𝛼 in Eq. 12 is set as 0.3.

4.3.2 Comparisons with State-of-the-art Methods . To fully
validate the effectiveness of our proposed SIM-Trans approach for
fine-grained visual categorization, comparison experiments with
SOTAmethods on the large-scale fine-grained visual categorization

benchmark iNaturalist 2017 are conducted. Table 3 summarizes the
result, and we can observe that:

• On iNaturalist 2017, our proposed SIM-Trans approach achieves
the best performance with 69.9% classification accuracy,
which outperforms the pure resnet152 and the pure ViT
(our baseline) by 10.9% and 2.9% respectively. Compared
with the optimal CNN based method TASN and transformer
based method RAMS-Trans, our SIM-Trans achieves 1.7%
and 1.4% improvements respectively. Thanks to the simplic-
ity and effectiveness of introducing structure information
into vision transformer, our SIM-Trans approach is able to
extend to both academic dataset and large-scale challenging
scenario. The above comparison experiment results verify
the effectiveness of our proposed SIM-Trans approach on
the large-scale FGVC benchmark, whose categories are more
than 5,000 with more than 95,000 test images.

4.3.3 Qualitative Results . The visualization results of our SIM-
Trans approach on iNaturalist 2017 are also shown in Figure 3.
Visual objects of different subcategories belonging to different super
categories can be highlighted precisely, which verifies the accurate
object structuremodeling and generalization ability of our proposed
SIM-Trans model.
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Table 4: Ablation Experiments on CUB-200-2011 dataset.

Method Acc(%)
Baseline 90.6
Baseline + SIL 91.1
Baseline + SIL + MFB_without_CL 91.4
Baseline + SIL + MFB 91.8
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Figure 4: Layer number experiments of structure information
introduction on CUB-200-2011 dataset.

4.4 Effectiveness of Each Component in Our
SIM-Trans Approach

Structure information learning (SIL) module and multi-level feature
boosting (MFB) module are proposed in our SIM-Trans approach.
We conduct ablation experiments on CUB-200-2011 dataset and the
effectiveness of each component is shown in Table 4 and Figure 4,
we can observe that:

• A classifier head is added to the ViT extractor as our baseline,
which can achieve 90.6% classification accuracy on CUB-
200-2011 dataset. Compared with our baseline, the structure
information learning (SIL) module improves the classifica-
tion accuracy by a margin of 0.5%, which is simply added
to the last transformer layer as a plug-in. The SIL module
boosts the model’s understanding ability for the object struc-
ture and highlights significant regions to make the feature
representation more discriminative.

• Based on the SIL module, we conduct multi-layer structure
information injection and the multi-level feature boosting
(MFB) for robust feature learning, which can bring another
0.7% performance gain. We attempt to add the SIL module
from the top layer to the bottom layer, and Figure 4 shows
when the number of layers is set as three, the proposedmodel
can achieve the best performance. It also demonstrates the
combination of SIL’s expansion andMFB’s fusion contributes
to each other for improving the classification performance.

• In MFB, the contrastive learning can improve the classifica-
tion accuracy by a margin of 0.4%, which attends to hard
negative samples and utilize the semantic relations to boost
the model’s feature discrimination.

4.5 Hyper-parameter Experiments
There is only one hyper-parameter in our SIM-Trans model design-
ing. The 𝛼 of MFB module in Eq. 12 controls the hardness degree
of negative pairs in contrastive learning. We analyze the influence
of 𝛼 on the classification performance in Figure 5. When 𝛼 is set to
be 0.3, the proposed SIM-Trans model can achieve the best classi-
fication performance. Continuing to increase 𝛼 , the performance
degrades because the over-high threshold cannot filter out easy
negative pairs, which is harmful for contrastive learning.
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91.8
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 %
) 91.6
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91.4

Figure 5: Hyper-parameter experiments of 𝛼 on CUB-200-
2011 dataset.

5 CONCLUSION
In this paper, we propose the structure information modeling trans-
former (SIM-Trans) that introduces the object structure informa-
tion into vision transformer for boosting the discriminative feature
learning to contain both the appearance and structure informa-
tion. Structure information learning (SIL) module is proposed to
mine spatial context relation of significant patches within the ob-
ject extent, which boosts model’s understanding ability for object
structure and highlights discriminative regions. Multi-level feature
boosting (MFB) module is then proposed to exploit the comple-
mentary of multi-level features and contrastive learning to further
enhance feature representation robustness for accurate fine-grained
recognition. The combination of the proposed two modules boosts
each other and promotes the feature discrimination. The proposed
SIM-Trans approach provides an attempt to model object structure
in transformer framework and achieves state-of-the-art for FGVC
task on two typical fine-grained benchmarks, especially achieving
promising performance on the large-scale iNaturalist 2017 bench-
mark.

In the future, the structure embedding to the initial layer of the
transformer frameworkwill be studied for better structuremodeling
to improve fine-grained visual categorization performance.
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